Performance & JIT Compilation
Flowa features a custom JIT compiler that translates bytecode to native machine code for optimal performance.
JIT Compilation
The JIT (Just-In-Time) compiler optimizes hot code paths:
- Hot loop detection: Frequently executed loops are compiled to native code
- Native code generation: x64/arm64 machine code for maximum speed
- Register allocation: Efficient use of CPU registers
- Constant folding: Compile-time evaluation of constant expressions
Benchmarks
Performance on Apple Silicon (arm64):
- 100M Loop: 0.34s (LLVM JIT)
- 10M Loop: 0.06s
- 5M Printing: 0.04s
// 100M counter loop
let i = 0;
while (i < 100000000) {
i = i + 1;
}Performance Tips
1. Cache Array Length
// Slower - recalculates length each iteration
let i = 0;
while (i < len(arr)) {
print(arr[i]);
i = i + 1;
}
// Faster - cache length
let count = len(arr);
let i = 0;
while (i < count) {
print(arr[i]);
i = i + 1;
}2. Avoid String Concatenation in Loops
// Slower
let result = "";
let i = 0;
while (i < 1000) {
result = result + tostring(i) + ",";
i = i + 1;
}
// Faster - build array then join
let parts = [];
let i = 0;
while (i < 1000) {
parts = push(parts, tostring(i));
i = i + 1;
}
let result = join(parts, ",");3. Direct Array Access
// Direct access is faster than repeated operations
let value = arr[i];
print(value);
print(value + 1);
// Slower - multiple lookups
print(arr[i]);
print(arr[i] + 1);4. func Call Overhead
// Inlining simple operations can be faster
let result = x * 2; // Faster
func double(n) {
return n * 2;
}
let result = double(x); // func call overhead5. Use Local Variables
// Locals are faster than globals
func process_data(arr) {
let count = len(arr); // Local
let i = 0;
while (i < count) {
// Fast local access
i = i + 1;
}
}Memory Management
Flowa uses:
- Reference counting: Automatic memory management
- Garbage collection: Reclaims unused memory
- Object pooling: Reuses common objects
Memory Tips
- Reuse objects when possible
- Clear large arrays when done
- Avoid circular references
- Close database connections
Profiling
Monitor performance:
func benchmark(fn, iterations) {
let start = "time_start"; // Get timestamp
let i = 0;
while (i < iterations) {
fn();
i = i + 1;
}
let end = "time_end"; // Get timestamp
print("Completed in: " + tostring(end - start) + "ms");
}Best Practices
- Write simple code first - Optimize only when needed
- Measure before optimizing - Profile to find bottlenecks
- Use appropriate data structures - Arrays for lists, hashes for lookups
- Minimize I/O - Batch file/database operations
- Cache expensive calculations - Store results for reuse
Next Steps
- Concurrency - Parallel execution with actors
- Architecture - How Flowa works internally